Историческая справка
Давно, почти 70 миллионов лет тому назад, Мировой океан был заселен беспозвоночными. Но рыбы, первыми обзаведясь мозгом, истребили значительное их количество. С тех пор они господствуют в водном пространстве. Современный мозг рыбы очень сложный. Действительно, следовать какому-то поведению без программы трудно. Мозг решает данную проблему, используя разные варианты. Рыбы предпочли импринтинг, когда мозг готов к поведению, которое он задает на определенный момент своего развития.
Например, лососи обладают интересной особенностью: на нерест плывут в реку, в которой сами появились на свет. При этом они преодолевают огромные расстояния, и никакой карты у них нет. Это возможно благодаря данному варианту поведения, когда отдельные участки мозга похожи на фотокамеру, имеющую таймер. Принцип работы устройства такой: наступает момент, когда срабатывает диафрагма. Оказавшиеся перед камерой изображения остаются на пленке. Так и у рыб. Они руководствуются в своем поведении именно изображениями. Импринтинг определяет индивидуальность рыб. Если предоставить одинаковые условия, разные их породы будут вести себя неодинаково. У млекопитающих сохранился механизм данного способа поведения, то есть импринтинга, но сузилась сфера применения важных его форм. У человека, например, сексуальные навыки сохранились.
Нервная система рыб
За слаженность работы всех органов и систем организма отвечает нервная система. Также она обеспечивает реакцию организма на те или иные изменения в окружающей среде. Состоит она из центральной нервной системы (спинного и головного мозга) и периферической нервной системы (отходящих от головного и спинного мозга ответвлений). Состоит головной мозг рыбы из пяти отделов: переднего, который включает зрительные доли, среднего, промежуточного, мозжечка и продолговатого мозга. У всех ведущих активный образ жизни пелагических рыб, мозжечок и зрительные доли достаточно крупные, поскольку им нужна тонкая координация и хорошее зрение. Продолговатый мозг у рыб переходит в спинной мозг, заканчивающийся в хвостовом отделе позвоночника.
С помощью нервной системы организм рыбы отвечает на раздражения. Данные реакции называются рефлексами, которые можно поделить на условные рефлексы и безусловные. Последние еще называют врожденными рефлексами. Безусловные рефлексы у всех относящихся к одному виду животных проявляются одинаково, тогда как условные рефлексы индивидуальны и вырабатываются в течение жизни конкретной рыбы.
Заметки [ править ]
- ^ Budelmann, Bernd U .; Блекманн, Хорст (1988). «Аналог боковой линии у головоногих моллюсков: водные волны генерируют микрофонные потенциалы в эпидермических линиях головы у Sepia и Lolliguncula ». Журнал сравнительной физиологии А . 164 (1): 1–5. DOI : 10.1007 / BF00612711 . PMID 3236259 . S2CID 8834051 .
- Перейти ↑ Larsson, M (2012). “Почему косяк рыбы?” . Современная зоология . 58 (1): 116–128. DOI10.1093 / czoolo / 58.1.116 .
- ^ Ziemer, Тим (2020). «Биология слуховой системы». Синтез звукового поля психоакустической музыки . Текущие исследования в систематическом музыкознании. 7 . Чам: Спрингер. С. 45–64. DOI10.1007 / 978-3-030-23033-3_3 . ISBN 978-3-030-23033-3.
- ^ Блекманн, Хорст; Зелик, Рэнди (2009-03-01). «Боковая система рыб». Интегративная зоология . 4 (1): 13–25. DOI10.1111 / j.1749-4877.2008.00131.x . ISSN 1749-4877 . PMID 21392273 .
- ^ Ларссон М. (2009) Возможные функции октаволатеральной системы при обучении рыб. Рыба и рыба 10: 344-355
- ^ a b Coombs S1, Braun CB, Донован Б. (2001). «Ориентирующая реакция пятнистого бычка из озера Мичиган опосредуется невромастами канала». J Exp Biol . 204 (Pt 2): 337–48. PMID 11136619 .
- ^ Карлсен, HE; Санд, О. (1987). «Избирательное и обратимое блокирование боковой линии у пресноводных рыб». Журнал экспериментальной биологии . 133 (1): 249–262.
- ^ Кувшин, Т .; Куропатка, B .; Уордл, К. (1976). «Слепая рыба может косить». Наука . 194 (4268): 963–965. Bibcode1976Sci … 194..963P . DOI10.1126 / science.982056 . PMID 982056 .
- ^ Йошизава М, Джеффри WR, ван Netten С.М., Макэнри МДж (2014). «Чувствительность рецепторов боковой линии и их роль в поведении мексиканской слепой пещерной рыбы Astyanax mexicanus . J Exp Biol . 217 (6): 886–95. DOI10,1242 / jeb.094599 . PMC 3951362 . PMID 24265419 .
- ^ Буффанаис, Роланд; Weymouth, Gabriel D .; Юэ, Дик КП (2 июня 2010 г.). «Распознавание гидродинамических объектов по давлению» . Труды Королевского общества A: математические, физические и инженерные науки . 467 (2125): 19–38. DOI10,1098 / rspa.2010.0095 .
- ^ Лаккам, Шритей; Баламурали, БТ; Буффане, Роланд (2 августа 2019 г.). «Идентификация гидродинамических объектов с помощью искусственных нейронных моделей» . Научные отчеты . 9 (1): 11242. arXiv1903.00828 . Bibcode2019NatSR … 911242L . DOI10.1038 / s41598-019-47747-8 . PMC 6677828 . PMID 31375742 .
- ^ Рассел, IJ (1971). «Фармакология эфферентных синапсов в системе боковой линии Xenopus Laevis». Журнал экспериментальной биологии . 54 (3): 643–659. PMID 4326222 .
- ^ ФЛОК, A. (1967). Ультраструктура и функции органов боковой линии. Детекторы боковой линии. Под редакцией П. Кана. Издательство Индианского университета.
- ^ a b Персик, МБ; Роуз, GW (2000). «Морфология ямочных органов и нейромастов боковых каналов Mustelus Antarcticus (Chondrichthyes: Triakidae)». Журнал Морской биологической ассоциации Соединенного Королевства . 80 (1): 155–162. DOI10.1017 / s0025315499001678 .
- ^ а б ФЛОК, А. (1967).
- Перейти ↑ Kuiper, J. (1967). Частотные характеристики и функциональное значение органа боковой линии. Детекторы боковой линии. Издательство Индианского университета.
- ^ Flock, A .; ЛАМ, ДМК (1974). «Синтез нейротрансмиттеров во внутреннем ухе и органах чувств боковой линии». Природа . 249 (5453): 142–144. Bibcode1974Natur.249..142F . DOI10.1038 / 249142a0 . PMID 4151611 . S2CID 275004 .
- ^ а б Weeg, MS; Бас, AH (2002). “Амплитудно-частотные характеристики поверхностных нейромастов боковой линии у голосовых рыб с доказательствами акустической чувствительности”. Журнал нейрофизиологии . 88 (3): 1252–1262. DOI10,1152 / jn.2002.88.3.1252 . PMID 12205146 .
- ^ Монтгомери, JC; Бодзник, Д. (1994). «Адаптивный фильтр, устраняющий самоиндуцированный шум в электросенсорной системе и механосенсорной системе боковой линии рыб». Письма неврологии . 174 (2): 145–148. DOI10.1016 / 0304-3940 (94) 90007-8 . PMID 7970170 . S2CID 15709516 .
- ^ а б Маруська КП; Трикас, TC (2009). «Центральные проекции октаволатеральных нервов в головном мозге звуковой стрекозы (Abudefduf abdominalis)». Журнал сравнительной неврологии . 512 (5): 628–650. DOI10.1002 / cne.21923 . PMID 19048640 .
- ^ Новый, JG; Coombs, S .; Маккормик, Калифорния; Ошел, ЧП (1996). «Цитоархитектура медиального ядра octavolateralis у золотой рыбки Carassius auratus». Журнал сравнительной неврологии . 366 (3): 534–546. DOI10.1002 / (SICI) 1096-9861 (19960311) 366: 3 <534 :: AID-CNE11> 3.0.CO; 2-П . PMID 8907363 .
Интересные факты
- Нейромасты родственны нервным клеткам, отвечающим у нас за равновесие. В какой-то момент эволюция пошла по другому пути, и обделила нас сейсмосенсорикой. Впрочем, у некоторых сухопутных животных она имеется, пусть и не в столь развитом состоянии, иначе как объяснить тот факт, что собаки и кошки чувствуют приближение землетрясений?
- Большинство рыб способно улавливать колебания стеклянного волоска толщиной в четверть миллиметра на расстоянии до полуметра! Чувствительность боковой линии зависит от вида рыбы, но абсолютно «инфраглухих» среди них не наблюдается.
- Жерех научился использовать сейсмосенсорику рыб против них же самих. Этот хищник из семейства карповых выработал абсолютно уникальную тактику охоты. Он охотится максимально шумно, выпрыгивая из воды и создавая плеск внушительным хвостом. В результате рыбки-жертвы буквально «глохнут» и дезориентируются в пространстве, а жерех спокойно пожирает растерявшуюся добычу.
- Кефаль и сельдь не имеют боковой линии. То есть, не имеют ее визуального проявления вдоль тела. У этих рыб большинство нейромастов расположено на голове, а также имеются свободные сенсоры на коже.
- Морской окунь-терпуг имеет несколько боковых линий. Природа «украсила» представителей семейства терпуговых несколькими боковыми линиями. И это закономерно: большинство их обитает на значительных глубинах, где свет в дефиците.
Если знать об уникальной сейсмочувствительности рыб, можно избежать множества ошибок и понять, как себя вести на рыбалке в том или ином случае. Богатых уловов вам, коллеги!
Рыболовы удивляются, почему у меня клюет, а у них нет? Только для вас раскрываю секрет: все дело в чудо-приманке! Подробнее
Электрофизиология
Механорецептивные волосковые клетки структуры боковой линии интегрируются в более сложные цепи через свои афферентные и эфферентные связи. Синапсы, которые непосредственно участвуют в передаче механической информации, представляют собой возбуждающие афферентные связи, использующие глутамат . Однако возможно множество различных нейромастов и афферентных связей, что приводит к изменению механорецептивных свойств. Например, серия экспериментов на поверхностных невромастах Porichthys notatus показала, что невромасты могут проявлять рецептивную специфичность для определенных частот стимуляции. Используя обездвиженную рыбу для предотвращения посторонней стимуляции, металлический шар вибрировал с разной частотой. Используя измерения отдельных клеток с помощью микроэлектрода, ответы были записаны и использованы для построения кривых настройки, которые выявили частотные предпочтения и два основных типа афферентных нервов. Одна разновидность приспособлена для сбора механорецептивной информации об ускорении, реагируя на частоты стимуляции от 30 до 200 Гц. Другой тип чувствителен к информации о скорости и наиболее восприимчив к стимуляции ниже <30 Гц. Это предполагает более сложную модель приема, чем считалось ранее.
Эфферентные синапсы к волосковым клеткам тормозят и используют ацетилхолин в качестве передатчика. Они являются важными участниками системы разряда следствий, предназначенной для ограничения самогенерируемых помех. Когда рыба движется, она создает волнения в воде, которые могут быть обнаружены системой боковой линии, потенциально препятствуя обнаружению других биологически значимых сигналов. Чтобы предотвратить это, при двигательном действии волосковой клетке посылается эфферентный сигнал, что приводит к торможению, которое противодействует возбуждению, возникающему в результате приема самогенерируемой стимуляции. Это позволяет рыбе сохранять восприятие стимулов движения без помех, создаваемых ее собственными движениями.
После того, как сигналы, передаваемые волосковыми клетками, передаются по боковым нейронам, они в конечном итоге достигают мозга. Методы визуализации показали, что область, где эти сигналы чаще всего заканчиваются, – это медиальное октаволатеральное ядро (MON). Вероятно, что MON играет важную роль в обработке и интеграции механорецептивной информации. Это было подтверждено другими экспериментами, такими как использование окрашивания по Гольджи и микроскопия New & Coombs, чтобы продемонстрировать присутствие отдельных слоев клеток в MON. Отчетливые слои базилярных и небазилярных клеток гребня были идентифицированы внутри глубокого MON. Проведя сравнение с аналогичными клетками в близкородственной электросенсорной доле боковой линии электрических рыб, можно предположить возможные вычислительные пути МОН. MON, вероятно, участвует в интеграции сложных возбуждающих и тормозных параллельных цепей для интерпретации механорецептивной информации.
Боковая линия и ее роль в поведении рыб. Ихтиологический минимум
Существенную роль в поведении рыб играют органы чувств — боковая линия, или сейсмосенсорная система. Она объединяет все чувствительные клетки рецепторов смещения, которые могут быть встречены в разнообразных участках тела и головы.
Боковая линия проходит в виде продольного канала, погруженного в кожу и открывающегося наружу отверстиями. Визуально боковая линия видна как темная или светлая полоса по обоим бокам тела от головы до конца хвостового стебля. Её структура, внешняя форма и местоположение на теле рыбы сильно варьируют у различных видов.
У большинства рыб имеется по одному каналу с каждой стороны, а у некоторых — до 5 и более, например, у терпугов. У одних рыб она дугообразная, у других – с одним или несколькими буграми; у одних — она малозаметна визуально, у других — хорошо видны её ветви и на голове. У некоторых рыб на всём теле или отдельных его участках, наиболее часто на голове, разбросаны свободные невромасты или канальные органы. У морских уточек, например, сейсмосенсорные каналы имеются только на голове, на туловище они отсутствуют и заменены открыто сидящими сейсмосенсорными точками. У рыб семейства китовидковых имеются толстые каналы боковой линии с огромными круглыми порами. В то же время имеются рыбы, у которых боковая линия отсутствует или она неполная. К таким рыбам относятся кефали, даллия, многие карпозубообразные, атеринообразные и другие.
Чувствительные клетки боковой линии, свободных невромастов и канальных органов чувств оканчиваются на вершине сосочками или волосками, а с противоположной стороны – веточкой нерва. Смещение сосочка или волоска создаёт генераторный потенциал, который передаёт информацию по нервам в акустико-латеральный центр мозга. Органы боковой линии содержат также ампулярные и ампуляроподобные клетки, которые выполняют электрорецепторные функции.
Визуальными наблюдениями установлено, что разряд грозы вызывает панику среди ершей и красноперок. Землетрясение рыбы улавливают раньше самых чутких приборов. Некоторые виды акул ощущают даже незначительные электрические импульсы, которыми сопровождаются мускульные усилия плывущего человека. При помощи боковой линии они могут отыскать в темноте рыбу, которая не перемещается, а лишь дышит на морском дне.
Акулы по-разному реагируют на электроимпульсы различной силы. Если источник слабый, то они нападают, если сильный — уплывают прочь. С учетом такого поведения был разработан и используется сегодня метод отпугивания акул от морских пляжей: воздействие на боковую линию электрическими разрядами, безвредными для человека.
Анализаторы системы боковой линии различно расположены на теле рыбы, функционально дополняют друг друга. Это обеспечивает рыбам, имеющим подобные рецепторы, дифференцировано воспринимать идущие из-вне раздражения. Открытые невромасты (генипоры, щечные поры) принимают колебания воды, преимущественно от соприкосновения её с поверхностью тела. Большинство видов рыб, живущих в прибрежной зоне или вблизи дна, имеют на голове преимущественно или исключительно генипоры. Рецепторы закрытых каналов боковой линии в большей или меньшей степени изолированы от поверхностных раздражений. Они воспринимают колебания гидродинамических полей, звуковую и инфразвуковую вибрацию. Такой тип строения органов боковой линии присущ, прежде всего, рыбам-хищникам, которые живут в открытых водоемах и лишь изредка могут приближаться к берегам.
Какую роль играет плавательный пузырь у рыб?
Он действует как регулируемый поплавок, чтобы рыбка могла плавать на любой глубине с наименьшими усилиями. Когда рыба опускается на дно, удельный вес тела увеличивается. Когда она поднимается, плавательный пузырь расширяется, удельный вес уменьшается. С помощью такой регулировки рыбка может поддерживать равновесие на любом уровне.
Гидростатическая функция
Это, прежде всего, гидростатический аппарат, который нужен и помогает удерживать вес тела равным объему вытесняемой рыбкой воды. Он также служит для уравновешивания тела по отношению к окружающей среде путем увеличения или уменьшения объема содержания газа.
Защитная функция
Дыхательная функция плавательного пузыря весьма значительна. В воде, с низким содержанием кислорода, у многих рыб кислород, вырабатывается в мочевом пузыре, служит источником кислорода, а не поглощать воздух ртом из атмосферы. У некоторых рыб плавательный пузырь видоизменяется в «легкое», способное принимать атмосферный воздух. Например, многоперовые полиптерусы имеют систему двойного дыхания – жаберного и легочного.
Функции органов чувств
Считается, что плавательный пузырь призван выполнять функцию как резонатор (но не хрящевым рыбкам). Он усиливает вибрации звука, передает их в ухо. У многих рыб он тесно связан с внутренним ухом. Эта связь, возможно, позволяет передавать изменение давления в перилимфу.
Он помогает рыбкам в производстве звука. Вибрации вызываются движением содержащегося в рыбном пузыре воздуха. Звук может также быть произведен сжатием внешней и внутренней мускулатуры плавательного пузыря.
Другие функции
Пузырь рыбы помогает поддерживать надлежащий центр тяжести, перемещая газ из одной его части в другую, что облегчает проявление различных движений.
Вкусовые ощущения и обоняние у рыб
За вкусовые ощущения и обоняние у рыб отвечают два отверстия на лобной части головы — ноздри. Как у человека нос, так у рыб эти дырочки служат для определения запахов и вкусов разных предметов. Обонятельный орган у рыб позволяет им безошибочно определять путь к нерестилищу или находить растительную и животную пищу в воде.
Лучше всего обоняние развито у тех рыб, которые любят вести активный образ жизни в ночное время и в местах со слабой освещенностью. К таким рыбам относят налима, сома, леща, угря и в какой-то степени сазана. Они очень хорошо различают соленые, сладкие, кислые и горькие запахи.
Вкусовые рецепторы находятся внутри рта, в районе челюстей и на усах рыб. Если посмотреть, как развит ротовой орган у лещей, сазанов, как они легко находят пищу, то многое становится понятным. К примеру, некоторые виды рыб откладывают игру вдали от основных мест обитания. К таковым относятся, в первую очередь, угри, лососи, плотва, вобла и караси в какой-то мере.
Что интересно, мальки, вылупляясь из икринок не могут знать, где их естественная среда обитания. Но они быстро находят дорогу за многие сотни километров и оказываются в кругу своих родственников. Ярким примером являются лососи, которые рождаются в море, а потом с большой скоростью направляются домой. Причем находят именно ту реку, где живут лососи. Определяют свою родную стихию по составу воду, по ее вкусу. За это и отвечают органы обоняния. С их помощью рыбы безошибочно определяют для себя ту воду, в которой они с наибольшим комфортом могли бы жить.
То же самое можно сказать и об угрях. Эти рыбы плывут за тысячу километров, чтобы отложить икру. И они без труда находят родную речку. Не удивительно, что ночью эти рыбы легко находят червей и другую пищу. Зрение по большому счету им необходимо по стольку-поскольку.
Функция органов вкуса и обоняния заключается в определении кислотности среды и количества кислорода в воде. Именно поэтому тот же лещ или густера не будут жить в илистых участках водоема. Такой состав воды им не подходит в отличие от карася или карпа. Грубо говоря, если искусственно поместить рыб в неестественную для них среду, то они там не приживутся. Ноздри у рыб не соединены с носоглоткой. Поэтому вкусовые рецепторы разбросаны по всему телу: на усиках, плавниках и жабрах, а также на коже.
Красноречивыми являются примеры сома и налима, которые очень любят охотиться в ночное время. У этих рыб очень хорошо развиты органы, отвечающие за вкусы и запахи: усы, плавники и ноздри. Налим при помощи усов и плавников без труда находит пищу в холодное и темное время. Сом делает точно также, только в теплое время года.
Большинство мирных и хищных рыб улавливают электропроводимость воды. За эту способность отвечают ямки, расположенные на теле.
Рыбакам следует четко понимать, что рассмотренные выше органы чувств влияют на клев рыб. Поэтому часто можно встретить советы о том, что не следует перебарщивать с ароматизаторами. У человека и у рыб есть определенный порог чувствительности по запахам. При его переходе уже не ощущается ни вкуса, ни запаха. Чтобы понять, как это может быть, достаточно вдохнуть аромат сильного жидкого концентратора с ярко-выраженным запахом. По началу ощущается запах, но потом происходит адаптация. Если вдохнуть жидкость с более сильным запахом, то вы ничего не определите. То же самое происходит и с рыбами. Если забросить прикормку с через чур сильным запахом, то рыба по запаху не отличит ее от грунта на дне.
Анатомия[ | код]
Рецепторы боковой линии называются невромастами, каждый из которых состоит из группы волосковых клеток. Волоски находятся в выпуклой желеобразной купуле, размером около 0,1—0,2 мм. Волосковые клетки и купулы невромастов обычно находятся в нижней части желобков и ямок, составляющих органы боковой линии. Волосковые клетки боковой линии похожи на волосковые клетки внутреннего уха, что говорит о том, что эти органы имеют общее происхождение.
Органы боковой линии костистых рыб и пластиножаберных обычно имеют вид каналов, в которых невромасты связаны с внешней средой не напрямую, а через канальные поры. В боковых линиях некоторых рыб и различных частях поверхности тела рыбы могут также присутствовать свободносидящие невромасты, не связанные с каналами.
Нервная система и органы чувств рыб
Спинной мозг рыб находится в канале, образованном верхними дугами позвонков. Таким образом спинной мозг хорошо защищен.
Головной мозг защищен черепной коробкой и состоит из пяти отделов: переднего мозга с обонятельными долями, промежуточного и среднего мозга, мозжечка, продолговатого мозга. Наиболее развиты у костных рыб мозжечок и средний мозг. Первый отвечает за координацию движений, а во втором находятся зрительные центры.
В глазах находится шаровидный хрусталик, роговица утолщена. Аккомодация достигается за счет движения хрусталика, а не изменения его формы (как, скажем, у млекопитающих). Рыбы видят в даль обычно до 15 м, т. е. их хрусталик приспособлен для зрения на близком расстоянии. Такое приспособление зрения в процессе эволюции обусловлено низкой прозрачностью воды. Глаза имеют веки.
Ноздри ведут в замкнутые обонятельные мешки. Там расположены обонятельные рецепторы.
Хорошо развиты органы химического чувства (обоняния и вкуса). Вкусовые почки у костных рыб находятся не только в ротовой полости, но и в различных местах кожи тела.
Орган слуха и равновесия состоит из внутреннего уха, включающего три полукружных канала (орган равновесия), и полого мешочка, который воспринимает звуковые колебания. Благодаря плотности воды звуковые волны передаются через кости черепа и достигают органов слуха (другими словами, во внешнем отверстии нет необходимости). Рыбы могут издавать звуки (скрип, щелчки). Такие звуки выполняют роль сигналов при поиске пищи и во время размножения. Звуки издаются с помощью трения зубов, костей, при изменении объема плавательного пузыря.
Осязательные клетки у рыб расположены по всей поверхности тела.
Орган боковой линии
У рыб имеется уникальный орган боковой линии. Он состоит из чувствительных клеток, которые расположены на дне желобков или в каналах на теле рыбы. Эти каналы или желобки имеют отверстия во внешнюю среду. Чувствительные клетки органа боковой линии имеют реснички. Каналы тянутся по обеим сторонам всего тела рыбы.
Функция органа боковой линии — это восприятие колебаний воды. С помощью боковой линии рыбы определяют скорость и направление течения, наличие предметов рядом и даже колебания напряженности магнитных и электрических полей.
Функции плавников у рыб
Благодаря наличию плавников, рыбы способны перемещаться и удерживать равновесие в воде. Если рыба будет лишена плавников, она просто перевернется брюхом вверх, поскольку центр тяжести рыбы расположен в ее спинной части.
Спинной и анальный плавники обеспечивают рыбам устойчивое положение тела, а хвостовой плавник почти у всех рыб является своеобразным движителем.
Расположение плавников у рыб.
Что касается парных плавников (брюшных и грудных), то они выполняют в основном стабилизирующую функцию, поскольку обеспечивают во время неподвижности рыбы равновесное положение тела. С помощью этих плавников рыба может принять нужное ей положение тела. Кроме этого они являются несущими плоскостями во время движения рыбы, и выполняют функцию руля. Что до грудных плавников, то это своеобразные маленький моторчик, с помощью которого рыба перемещается во время медленного плавания. Брюшные плавники в основном используются для поддержания равновесия.